skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Siana, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present spatially-resolved rest-frame optical emission line maps of four galaxies at z∼2 observed with Keck/OSIRIS to study the physical conditions of the ISM at Cosmic Noon. Our analysis of strong emission line ratios in these galaxies reveals an offset from the local star-forming locus on the BPT diagram, but agrees with other star-forming galaxies at similar redshifts. Despite the offset towards higher [O III]λ5008/Hβ and [N II]λ6585/Hα, these strong-line ratios remain consistent with or below the maximum starburst threshold even in the inner ∼1 kpc region of the galaxies, providing no compelling evidence for central AGN activity. The galaxies also exhibit flat radial gas-phase metallicity gradients, consistent with previous studies of z∼2 galaxies and suggesting efficient radial mixing possibly driven by strong outflows from intense star formation. Overall, our results reveal the highly star-forming nature of these galaxies, with the potential to launch outflows that flatten metallicity gradients through significant radial gas mixing. Future observations with JWST/NIRSpec are crucial to detect fainter emission lines at higher spatial resolution to further constrain the physical processes and ionization mechanisms that shape the ISM during Cosmic Noon. 
    more » « less
    Free, publicly-accessible full text available June 27, 2026
  2. ABSTRACT We use the large spectroscopic data set of the MOSFIRE Deep Evolution Field survey to investigate the kinematics and energetics of ionized gas outflows. Using a sample of 598 star-forming galaxies at redshift 1.4 < z < 3.8, we decompose [O iii] and $$\rm {H}\,\alpha$$ emission lines into narrow and broad components, finding significant detections of broad components in 10 per cent of the sample. The ionized outflow velocity from individual galaxies appears independent of galaxy properties, such as stellar mass, star formation rate (SFR), and SFR surface density (ΣSFR). Adopting a simple outflow model, we estimate the mass-, energy-, and momentum-loading factors of the ionized outflows, finding modest values with averages of 0.33, 0.04, and 0.22, respectively. The larger momentum- than energy-loading factors, for the adopted physical parameters, imply that these ionized outflows are primarily momentum driven. We further find a marginal correlation (2.5σ) between the mass-loading factor and stellar mass in agreement with predictions by simulations, scaling as ηm$$\propto M_{\star }^{-0.45}$$. This shallow scaling relation is consistent with these ionized outflows being driven by a combination of mechanical energy generated by supernovae explosions and radiation pressure acting on dusty material. In a majority of galaxies, the outflowing material does not appear to have sufficient velocity to escape the gravitational potential of their host, likely recycling back at later times. Together, these results suggest that the ionized outflows traced by nebular emission lines are negligible, with the bulk of mass and energy carried out in other gaseous phases. 
    more » « less
  3. ABSTRACT We report on the discovery of cool gas inflows towards three star-forming galaxies at <z> ∼ 2.30. Analysis of Keck Low-Resolution Imaging Spectrometer spectroscopy reveals redshifted low-ionization interstellar (LIS) metal absorption lines with centroid velocities of 60–130 km s−1. These inflows represent some of the most robust detections of inflowing gas into isolated, star-forming galaxies at high redshift. Our analysis suggests that the inflows are due to recycling metal-enriched gas from previous ejections. Comparisons between the galaxies with inflows and a larger parent sample of 131 objects indicate that galaxies with detected inflows may have higher specific star formation rates (sSFRs) and star-formation-rate surface densities (ΣSFR). However, when additional galaxies without robustly detected inflows based on centroid velocity but whose LIS absorption line profiles indicate large red-wing velocities are considered, galaxies with inflows do not show unique properties relative to those lacking inflows. Additionally, we calculate the covering fraction of cool inflowing gas as a function of red-wing inflow velocity, finding an enhancement in high-sSFR binned galaxies, likely due to an increase in the amount of recycling gas. Together, these results suggest that the low detection rate of galaxies with cool inflows is primarily related to the viewing angle rather than the physical properties of the galaxies. 
    more » « less
  4. Abstract We use the large spectroscopic data set of the MOSFIRE Deep Evolution Field survey to investigate some of the key factors responsible for the elevated ionization parameters (U) inferred for high-redshift galaxies, focusing in particular on the role of star-formation-rate surface density (ΣSFR). Using a sample of 317 galaxies with spectroscopic redshiftszspec≃ 1.9–3.7, we construct composite rest-frame optical spectra in bins of ΣSFRand infer electron densities,ne, using the ratio of the [Oii]λλ3727, 3730 doublet. Our analysis suggests a significant (≃3σ) correlation betweenneand ΣSFR. We further find significant correlations betweenUand ΣSFRfor composite spectra of a subsample of 113 galaxies, and for a smaller sample of 25 individual galaxies with inferences ofU. The increase inne—and possibly also the volume filling factor of dense clumps in Hiiregions—with ΣSFRappear to be important factors in explaining the relationship betweenUand ΣSFR. Further, the increase inneand SFR with redshift at a fixed stellar mass can account for most of the redshift evolution ofU. These results suggest that the gas density, which setsneand the overall level of star formation activity, may play a more important role than metallicity evolution in explaining the elevated ionization parameters of high-redshift galaxies. 
    more » « less
  5. Abstract We present observations of CO(3−2) in 13 main-sequence z = 2.0–2.5 star-forming galaxies at log ( M * / M ⊙ ) = 10.2 – 10.6 that span a wide range in metallicity (O/H) based on rest-optical spectroscopy. We find that L CO ( 3 − 2 ) ′ /SFR decreases with decreasing metallicity, implying that the CO luminosity per unit gas mass is lower in low-metallicity galaxies at z ∼ 2. We constrain the CO-to-H 2 conversion factor ( α CO ) and find that α CO inversely correlates with metallicity at z ∼ 2. We derive molecular gas masses ( M mol ) and characterize the relations among M * , SFR, M mol , and metallicity. At z ∼ 2, M mol increases and the molecular gas fraction ( M mol / M * ) decreases with increasing M * , with a significant secondary dependence on SFR. Galaxies at z ∼ 2 lie on a near-linear molecular KS law that is well-described by a constant depletion time of 700 Myr. We find that the scatter about the mean SFR− M * , O/H− M * , and M mol − M * relations is correlated such that, at fixed M * , z ∼ 2 galaxies with larger M mol have higher SFR and lower O/H. We thus confirm the existence of a fundamental metallicity relation at z ∼ 2, where O/H is inversely correlated with both SFR and M mol at fixed M * . These results suggest that the scatter of the z ∼ 2 star-forming main sequence, mass–metallicity relation, and M mol – M * relation are primarily driven by stochastic variations in gas inflow rates. We place constraints on the mass loading of galactic outflows and perform a metal budget analysis, finding that massive z ∼ 2 star-forming galaxies retain only 30% of metals produced, implying that a large mass of metals resides in the circumgalactic medium. 
    more » « less
  6. Abstract We investigate dust attenuation and its dependence on viewing angle for 308 star-forming galaxies at 1.3 ≤z≤ 2.6 from the MOSFIRE Deep Evolution Field survey. We divide galaxies with a detected Hαemission line and coverage of Hβinto eight groups by stellar mass, star formation rate (SFR), and inclination (i.e., axis ratio), and we then stack their spectra. From each stack, we measure the Balmer decrement and gas-phase metallicity, and then we compute the medianAVand UV continuum spectral slope (β). First, we find that none of the dust properties (Balmer decrement,AV, orβ) varies with the axis ratio. Second, both stellar and nebular attenuation increase with increasing galaxy mass, showing little residual dependence on SFR or metallicity. Third, nebular emission is more attenuated than stellar emission, and this difference grows even larger at higher galaxy masses and SFRs. Based on these results, we propose a three-component dust model in which attenuation predominantly occurs in star-forming regions and large, dusty star-forming clumps, with minimal attenuation in the diffuse ISM. In this model, nebular attenuation primarily originates in clumps, while stellar attenuation is dominated by star-forming regions. Clumps become larger and more common with increasing galaxy mass, creating the above mass trends. Finally, we argue that a fixed metal yield naturally leads to mass regulating dust attenuation. Infall of low-metallicity gas increases the SFR and lowers the metallicity, but leaves the dust column density mostly unchanged. We quantify this idea using the Kennicutt–Schmidt and fundamental metallicity relations, showing that galaxy mass is indeed the primary driver of dust attenuation. 
    more » « less
  7. ABSTRACT We define a new morphology metric called ‘patchiness’ (P) that is sensitive to deviations from the average of a resolved distribution, does not require the galaxy centre to be defined, and can be used on the spatially resolved distribution of any galaxy property. While the patchiness metric has a broad range of applications, we demonstrate its utility by investigating the distribution of dust in the interstellar medium (ISM) of 310 star-forming galaxies at spectroscopic redshifts 1.36 < z < 2.66 observed by the MOSFIRE Deep Evolution Field survey. The stellar continuum reddening distribution, derived from high-resolution multiwaveband CANDELS/3D-HST imaging, is quantified using the patchiness, Gini, and M20 coefficients. We find that the reddening maps of high-mass galaxies, which are dustier and more metal-rich on average, tend to exhibit patchier distributions (high P) with the reddest components concentrated within a single region (low M20). Our results support a picture where dust is uniformly distributed in low-mass galaxies (≲1010 M⊙), implying efficient mixing of dust throughout the ISM. On the other hand, the dust distribution is patchier in high-mass galaxies (≳1010 M⊙). Dust is concentrated near regions of active star formation and dust mixing time-scales are expected to be longer in high-mass galaxies, such that the outskirt regions of these physically larger galaxies remain relatively unenriched. This study presents direct evidence for patchy dust distributions on scales of a few kpc in high-redshift galaxies, which previously has only been suggested as a possible explanation for the observed differences between nebular and stellar continuum reddening, star formation rate indicators, and dust attenuation curves. 
    more » « less
  8. Abstract We present results from Atacama Large Millimeter/submillimeter Array (ALMA) 1.2 mm continuum observations of a sample of 27 star-forming galaxies at z = 2.1–2.5 from the MOSFIRE Deep Evolution Field survey with metallicity and star formation rate measurements from optical emission lines. Using stacks of Spitzer, Herschel, and ALMA photometry (rest frame ∼8–400 μ m), we examine the infrared (IR) spectral energy distributions (SED) of z ∼ 2.3 subsolar-metallicity (∼0.5 Z ⊙ ) luminous infrared galaxies (LIRGs). We find that the data agree well with an average template of higher-luminosity local low-metallicity dwarf galaxies (reduced χ 2 = 1.8). When compared with the commonly used templates for solar-metallicity local galaxies or high-redshift LIRGs and ultraluminous IR galaxies, even in the most favorable case (with reduced χ 2 = 2.8), the templates are rejected at >98% confidence. The broader and hotter IR SED of both the local dwarfs and high-redshift subsolar-metallicity galaxies may result from different grain properties or a harder/more intense ionizing radiation field that increases the dust temperature. The obscured star formation rate (SFR) indicated by the far-IR emission of the subsolar-metallicity galaxies is only ∼60% of the total SFR, considerably lower than that of the local LIRGs with ∼96%–97% obscured fractions. Due to the evolving IR SED shape, the local LIRG templates fit to mid-IR data overestimate the Rayleigh–Jeans tail measurements by a factor of 2–20. These templates underestimate IR luminosities if fit to the observed ALMA fluxes by >0.4 dex. At a given stellar mass or metallicity, dust masses at z ∼ 2.3 are an order of magnitude higher than z ∼ 0. Given the predicted molecular gas fractions, the observed z ∼ 2.3 dust-to-stellar mass ratios suggest lower dust-to-molecular gas masses than in local galaxies with similar metallicities. 
    more » « less